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Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to
modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and
interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation
can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that
enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the
prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of
higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various
changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described.
Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function
or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative
to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of
various psychiatric disorders, such as autism.

[Chaudhury S, Nag TC, Jain S and Wadhwa S 2013 Role of sound stimulation in reprogramming brain connectivity. J. Biosci. 38 605–614] DOI
10.1007/s12038-013-9341-8

1. Introduction

Sound has been an integral part of ancient human civiliza-
tions. Traditionally, various kinds of sound have been used
first as signals and later as a form of entertainment, music.
Sound at an optimum level for a short period may act as an
auditory stimulus to trigger various brain functions. Gottlieb
(1963, 1965) established that the auditory stimuli play a
major role in shaping perceptual learning in birds. He also
showed that auditory stimulation in altering visual prefer-
ences in birds (Johnston and Gottlieb 1981). Morphological
and biochemical alterations have been demonstrated in the
auditory pathway of chick following prenatal sound stimu-
lation (Wadhwa et al. 1999; Panicker et al. 2002; Alladi
et al. 2002, 2005a, b). In 2002 Lickliter et al. were able to

show for the first time that bird embryos are receptive to
sound stimulation which helps improve their learning abili-
ties. Later, Lickliter and his group published a series of
articles depicting the influence of pre and postnatal sensory
stimulation on the development of perceptual and cognitive
learning (Honeycutt and Lickliter 2002; Harshaw and Lickliter
2010, 2011). The role of bimodal sensory stimulation (auditory
and visual) and the importance in various learning behaviour
was emphasized (Lickliter and Stoumbos 1991; Sleigh and
Lickliter 1995). Thus, his pioneering work helped in under-
standing the importance of different sensory stimulation
(especially role of auditory stimulation) in altering the behav-
iour of birds. However, auditory stimulation did not receive
much attention among the scientists in terms of its ability to act
as environmental stimuli that can modify the morphological
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and biochemical development of the avian brain. In this article,
we review the role of auditory stimulation as sensory stimuli in
shaping various brain functions especially learning and mem-
ory during the prenatal period of birds, which parallels similar
functions of the mammalian brain.

2. Environmental factors as stimulators of brain
development

Brain development is a complex phenomenon that includes
an interaction between genes and the external environment.
Any alterations or manipulations in this interaction can lead
to modifications in the neural circuitry. Experience-
dependent modifications in the neural connectivity become
more predominant if changes are induced from early life.
This could lead to long-term plasticity, which allows fine
tuning to adapt even when animals are exposed to adverse
conditions such as stress (Guilarte et al. 2003; Leal-Galicia
et al. 2008; Reynolds et al. 2010). Wistar rats exposed to
enriched housing show improved behaviour in the open field
and spatial memory abilities in the water maze, reduction in
the deficits caused by neonatal anoxia and increase in the
expression of Ca2+-binding protein (CaBP) – parvalbumin
(PV) in hippocampal CA1, CA3 and dentate gyrus regions,
indicating the status of cytosolic Ca2+ stimulation
(Iuvone et al. 1996). Environmental enrichment results
in increased levels of brain-derived neurotrophic factor
(BDNF) in visual cortex, which plays a critical role in
neural plasticity during development (Cancedda et al.
2004; Sale et al. 2004). Enriched environment in early
phases of life is able to decrease serum corticosterone levels
and thus eases anxiety and irritability in rats (Ma et al. 2011).
Further, environmental enrichment with objects designed to
encourage spatial exploration accelerates the development of
spatial learning in northern bobwhite (Colinus virginianus)
neonatal chicks (Lazic et al. 2007). The early influence
of sensory or social enrichment is extremely important in
psychological development whereas studies in humans and
primates demonstrate that social deprivation has long-term
consequences on emotion and social behaviour (Champoux
et al. 1997; Chugani et al. 2001; Cirulli et al. 2010). In
addition to this, there is an effect of visual and tactile
stimulation in the development of perceptual responsive-
ness in chicks (Foushée and Lickliter 2002; Honeycutt and
Lickliter 2003). Thus, it is important to understand the role
of positive environmental stimuli on the developmental
pattern of different brain regions related to learning and
memory as this will help in understanding the role of
environment factors in shaping an individual’s behavioural
response. Further, it is to be noted that most studies are
largely concentrated on rodents; it is necessary to examine
other vertebrates and invertebrates in order to understand
the global role of genes–environment interaction in the

prenatal period of development, which is well known for
its immense potential for plasticity.

3. Sound as a sensory stimulus

Sensory stimuli in the form of vision, olfaction, touch and
sound are the factors that can influence the brain. The visual
stimuli, both during early developmental phase and adult-
hood, has been most commonly used environmental factor to
study changes in neural connectivity (Rose and Stewart
1978; Bartoletti et al. 2004; Ricciardi et al. 2007; Sale
et al. 2004; Mitchell and Sengpiel 2009). Sound has been
shown to produce physiological effects on blood pressure,
heart beat and respiration (Knight and Rickard 2001). An
increased level of oxygenated haemoglobin in the circulatory
blood in the prefrontal and temporal cortices was observed in
autism spectrum disorders following sound stimulation
(Funabiki et al. 2012). It is proposed that listening to music
facilitates hippocampal neurogenesis, the regeneration and
repair of nerves by adjusting the secretion of steroid hor-
mones, ultimately leading to cerebral plasticity (Fukui and
Toyoshima 2008). Birds and mammals generally show a
similar pattern of preference to a known stimulus, prenatal
auditory experience can modify the development of species-
specific auditory perception (Lickliter and Stoumbos 1992;
Jain et al. 2004). Experiments conducted by Dmitrieva and
Gottlieb (1994) showed the importance of perinatal auditory
stimulation in the development and maintenance of species-
typical perceptual preference by devocalization of mallard
and wood ducklings. Mother’s vocalization can alter the
adverse emotional experience in brush-tailed rat, Octodon
degus (Ziabreva et al. 2003). Therefore, there is a possibility
that auditory stimulation can influence by neural plasticity
during the pre- and perinatal period. Other than the auditory
pathway, sound simulation has profound effects on several
brain regions during adulthood including activating emotion-
al signals in amygdala (Wallentin et al. 2011), altering the
hippocampal neurogenesis (Jáuregui-Huerta et al. 2011) and
reducing noise correlation in rats prefrontal cortex (Ghim
et al. 2011). Further, more studies are required to provide
direct and strong experimental evidence for the mechanisms
of these manipulations. Therefore, it is necessary to explore
the influence of auditory stimulation on various neural func-
tions during the prenatal period, when the brain wiring still
undergoes continuous pruning.

3.1 Development of auditory pathway and sound
stimulation in birds

The auditory system in chicken matures earlier than other
sensory systems. The development of the chick auditory
pathway begins around embryonic day E8–E10. This is
evident from the observation that in the basilar cochlear

606 Sraboni Chaudhury et al.

J. Biosci. 38(3), September 2013



papillae of chick, the afferent synapses appear on the hair
cells by about embryonic day E8 to E11 (Cohen and Fermin
1978). The morphological differentiation of the hair cells
and cochlear nucleus of the medulla is completed by the
E12 or E13 (Knowlton 1967). This is the stage that corre-
sponds to the origin of evoked potentials in the brainstem
auditory nuclei in response to intense sound stimulation
(Saunders et al. 1973). The central processing of auditory
information also begins at this time (Jackson et al. 1982;
Sanes and Walsh 1998). Synaptic contacts between hair cells
and primary afferents appear by about E8 to E12 (Cohen and
Fermin 1978; Whitehead and Morest 1985a, b) and central
synapses between primary afferents and second order cells of
NM are functional by about E12 (Jackson et al. 1982;
Pettigrew et al. 1988). Spontaneous electrical activity was
recorded from the nucleus magnocellularis (NM) and
nucleus laminaris (NL), the second- and third-order nu-
clei, respectively, in the chick brainstem auditory system,
between E14 and E 19 (Lippe 1994) and the behavioural
responses to hearing are evident around E15–E17
(Jackson and Rubel 1978). All these studies confirm that
the auditory system in chick becomes functional before
birth and thus they can perceive external sounds in the
prenatal period. A number of studies from our laboratory
have shown that the auditory pathway of chicks is plastic
and undergoes modifications following prenatal sound
stimulation (Wadhwa et al. 1999; Alladi et al. 2005a,
2005b). Prenatal auditory stimulation in the form of
species-specific sound or music stimulation increases the
size of neurons and volume of the brainstem auditory
nuclei (NM and NL) as well as mediorostral nidopallium
hyperpallium ventrale (MNH; an auditory imprinting area)
in chicks (Wadhwa et al. 1999; Panicker et al. 2002).
Also, significant up-regulation of the various synaptic
proteins (Alladi et al. 2002) and immediate early gene,
c-fos (Alladi et al. 2005a) was observed in the brainstem
auditory nuclei as consequent to prenatal acoustic stimu-
lation. CaBPs were also significantly increased in the
MNH following prenatal sound stimulation indicating re-
sponsiveness of the regions by Ca2+-mediated neural ac-
tivity (Panicker et al. 2002). Moreover, behavioural
studies show an enhanced preference of the neonatal
chicks towards their maternal voice even stimulated with
either species-specific sound or complex sound like sitar
music. This suggests that patterned sound at optimal level
can influence the auditory perceptual ability of the neo-
natal chicks (Jain et al. 2004). Thus, auditory manipula-
tions by prenatal sound stimulation as early as E10 in
chicks results in increase in levels of various activity-
dependent markers and size of cochlear nucleus (NM
and NL) as well auditory imprinting area (MNH), which
explains the remarkable ability of the developing brain to
respond to any sensory stimulation by sound.

4. Importance of sound in humans

Hearing is an important function in its own right and also
contributes to the ability to speak, which further helps in
developing communication skills. In humans, hearing is
established in utero by the third trimester and there is in-
crease in fetal cortical brain activity in response to species-
typical sound (Birnholz and Benacerraf 1983; Blum et al.
1985; Hykin et al. 1999). Thus, infants show preferences to
some sound stimuli with respect to others, and this selectiv-
ity may contribute towards memory consolidation and pref-
erence to speech (Harlow and Harlow 1966; Skeels 1966).
Crude localization of sound sources is also possible by a
newborn (Muir and Field 1979), and its accuracy improves
progressively until the age of 18 months (Morrongiello and
Rocca 1987). An improved motor ability and autonomic
stability is observed in newborn babies when exposed to
music during pregnancy (Lind 1980; Chen et al. 1994).
The above-mentioned studies indicate the preferential re-
sponse to sounds that develops prenatally and suggest a
positive influence of pre- and postnatal auditory stimuli in
shaping social and emotional behaviour through modulation
of the auditory system. Leng and Shaw (1991) proposed that
musical activity can modulate firing patterns and enhance the
ability of the cortex to accomplish functions like spatial
reasoning. Indeed, there is a strong relationship of music
with spatial task performance (Rauscher et al. 1993, 1997;
Rauscher et al. 1995). Musical training in adult humans
leads to functional plasticity in the hippocampus (Herdener
et al. 2010). Functional MRI studies in humans show that the
activation of the hippocampus and parahippocampal regions
following pleasant music in contrast to the response of
unpleasant music (Koelsch et al. 2006). Music is shown to
facilitate general intelligence tasks (Cockerton et al. 1997) as
well as arithmetic and examination performances in children
(Schreiber 1988; Abikoff et al. 1996; Hallam et al. 2002). It
is found that background music significantly improves cog-
nitive performance in mild to moderate mentally challenged
students (Stainback et al. 1973) as well as in healthy under-
graduate students, older adults and Alzheimer’s patients
(Cockerton et al. 1997; Thompson et al. 2005). The spatial
performance also gets better with complex music exposure
in students and Alzheimer’s patients (Johnson et al. 2002;
Ivanov and Geake 2003). For such acoustic responsiveness,
parameters like sound pressure level (SPL), bandwidth, in-
tensity and frequency of the sound stimulus appear to be
important.

5. The hippocampus and its connectivity
with the auditory pathway

The avian brain has remarkable similarities with mammalian
or human brain for performance of cognitive tasks. With an
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old nomenclature developed on the basis of the work of
Ludwig Edinger (19th century), the father of comparative
neuroanatomy, it was believed that there were differences in
the avian and mammalian brains. However, Jarvis et al.
(2005) along with other scientists modified the nomenclature
of various brain regions of birds to be more comparable to
mammalian brain system in terms of its structure and
function. The avian and mammalian brain regions are also
comparable in their genetic and biochemical machinery
(Gibbs 2008). Birds such as owls that use nocturnal hunt-
ing have a highly sophisticated capacity for sound locali-
zation, which is similar to humans and is acquired through
learning (Knudsen 2002). Another species of bird, scrub-
jays, show episodic memory to recall events that take
place at a specific time or place parallel to humans
(Clayton and Dickinson 1998). The same species also alter
their food-storing locations accordingly to prevent future
stealing of food by other birds, thereby exhibiting a be-
haviour that would qualify as theory-of-mind (Emery and
Clayton 2001). The avian hippocampus is homologous to
the mammalian hippocampus on the basis of topography,
developmental origin (Kallen 1962) and its role in process-
ing spatial memory (Puelles et al. 2000; Siegel et al.
2002). The morphology (Molla et al. 1986; figure 1A),
afferent and efferent connectivity (Trottier et al. 1995) as
well neurotransmitter distributions (Erichsen et al. 1994;
figure 1B), are also similar in avian hippocampus, com-
pared to the mammalian hippocampus. The existence of
retino-thalamo-hippocampal pathway in pigeons was also
observed using intraocular injection and the retrograde
axonal transport of various other fluorescent tracers
(Trottier et al. 1995). Similar to its mammalian counter-
part, sound stimulation could modulate the neural circuitry
of the avian hippocampus due to the presence of a direct
and indirect anatomical connectivity with the auditory
pathway (Wild et al. 1993; Metzger et al. 1998; Braun
et al. 1999; figure 2). In addition, the auditory information
processed by the inferior colliculus is transmitted to the

auditory cortex and finally to the CA3 region of the
hippocampus (Moxon et al. 1999). In rats, damage to the
vestibular system results in a long-term impact on the
electrophysiological and neurochemical function of the
hippocampus (Smith et al. 2005). The data further suggest
that 6 weeks after noise exposure can progressively
impair learning and memory ability of mice, which
may result from increased oxidative stress markers, tau
hyperphosphorylation and auditory coding alteration
(Cheng et al. 2011). Thus, auditory stimulation affects
areas in the brain other than regions associated with the
auditory pathway.

5.1 Alteration in molecular pathway following sound
stimulation

Music exposure improves maze learning in adult rats
(Rauscher et al. 1998) and mice (Aoun et al. 2000). In
perinatal period, it enhances learning performance by alter-
ing BDNF/TrkB signalling in mice (Chikahisa et al. 2006).
BDNF expression and TrkB mRNA levels also are signifi-
cantly increased in the prefrontal cortex, amygdala and hip-
pocampus of rat and mice (Angelucci et al. 2007; Li et al.
2010). Music exposure during gestation period results in
increased neurogenesis in the hippocampus and enhanced
spatial learning ability in rat pups, whereas exposure to

Figure 2. Schematic diagram shows the connectivity of the chick
hippocampus with the auditory pathway. MNH – mediorostral
nidopallium/hyperpallium ventral; Field L (L1, L2 and L3) – audi-
tory cortex; H – hippocampus; Ndc – nidopallium dorsocaudale;
Ovo – nucleus ovodalis (thalamic auditory nucleus); CN – cochlear
nucleus.

Figure 1. (A) Electron micrograph shows the spine (→) and shaft
(►) synapse in post hatch day 1 chick hippocampus. (B) Photomicro-
graph shows the distribution of GABA positive cells (►) in E16 chick
hippocampus. H – hippocampus. Scale bar 0.5 μm (A) and 30 μm (B).
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non-musical noise causes growth retardation, decreased
neurogenesis in the hippocampus, and impaired spatial
learning ability in pups (Kim et al. 2006). Sound stimula-
tion during the prenatal period leads to an increase in

CaBPs in chick hippocampus, which may trigger activity-
dependent Ca2+ signalling pathways important for neuronal
plasticity, and initiates the early development of hippocam-
pal functions in chicks (Chaudhury et al. 2006, 2008). This
activated signalling pathway in turn up-regulates cAMP
response element-binding (CREB) protein phosphorylation
(figure 3), resulting in increased expression of BDNF, a
change that may help in neuronal survival, dendritic growth
and synaptic plasticity in chick hippocampus (Chaudhury
and Wadhwa 2009). Prenatal sound stimulation also causes
an increase in synaptic density and synaptic proteins in
chick hippocampus, which probably leads to increase in
synaptic plasticity in stimulated groups that may influence
long-term connectivity (Chaudhury et al. 2009, 2010).
Prenatal sound stimulation also leads to enhanced spatial
learning and perceptual preferences in neonatal chicks (Jain
et al. 2004; Chaudhury et al. 2010; Kauser et al. 2011).
Thus, sound stimulation could trigger the calcium-
dependent signalling pathway, which might trigger the
direct and indirect connection in the auditory pathway of
the avian brain (figure 4). This may lead to activation of
hippocampal neurons, which is connected to the auditory
pathway and might play a crucial role in influencing hip-
pocampal functions like learning and memory in chicks.

Figure 4. Schematic diagram shows the possible activity-dependent pathway in chick hippocampus following prenatal auditory
stimulation. Prenatal sound stimulation in chicks leads to calcium influx which in turn activates the second messenger cascade up-
regulating p-CREB, which then increases the levels of BDNF for neurogenesis and neuroplasticity or increases synaptic activity resulting in
improved spatial orientation.

Figure 3. Photomicrograph shows the expression of p-CREB in E12
chick hippocampus in the control (A) and music stimulated (B) group.
Note the increased expression levels of p-CREB in the music stimu-
lated group. H – hippocampus, v – lateral ventricle. Scale bar, 50 μm.
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5.2 Role of sound stimulation in various diseases
and effect of sound (noise) stimulation

In recent years, neuroimaging techniques have helped scien-
tists to better their understand of the neural correlates of
music processing and perception in the brain. Music has a
beneficial effect on nausea (Ezzone et al. 1998), anxiety and
depression (Burns et al. 2002; Talwar et al. 2006), cerebral
ischemia (Noda et al. 2004) and even on pain sensation
(Siedliecki and Good 2006). It exerts a positive influence
on the autistic spectrum disorder, as measured by an im-
provement in the clinical global impression scale and the
Brief Psychiatric Rating Scale (Boso et al. 2007). It has been
introduced as a treatment modality for the disturbed behav-
iour caused by Alzheimer’s disease (Brotons and Marti
2003), senile dementia (Sung and Chang 2005) and
schizophrenia-like disorders (Gold et al. 2005). It also leads
to increased motor coordination in Parkinson’s patients
(Bernatzky et al. 2004). In rat models of cerebral trauma,
an enriched environment in combination with sound stimu-
lation provides greater recovery in comparison to rats ex-
posed to an enriched environment only and/or to standard
housing (Maegele et al. 2005). In terms of neurochemical
mediators, endorphins, endocannabinoids, dopamine and
nitric oxide are altered in the musical experience (Boso et
al. 2006). Auditory enrichment by means of classical music
has been shown to be a reliable method for reducing stress
levels in several breeds of layer chicks (Dávila et al. 2011).
Thus, auditory stimulation within the audible range could
bring about positive changes in patients suffering from var-
ious brain disorders.

On the other hand, sound in the form of noise has detrimen-
tal effects on the brain connectivity leading to several patho-
logical conditions. Noise reduces activity in the hippocampus
as shown by the fMRI studies in humans (Hirano et al. 2006).
An increase in the serum corticosterone levels and a long-term
reduction of proliferating cells in the hippocampal formation
was reported after environmental noise exposure (Jáuregui-
Huerta et al. 2011). Noise causes a significant impairment in
the early spatial memory, possibly by disrupting glutamate-
NMDA receptor signalling and triggering aberrant tau
hyperphosphorylation in the hippocampus. In long-term
noise-stress exposed rats, there is oxidative stress, increased
cholinergic activity, reduced dendritic count in the hippocam-
pus and elevated plasma corticosterone level, which can cause
impaired spatial memory (Manikandan et al. 2006). Even
moderate-intensity noise leads to learning and memory impair-
ment in mice (Cheng et al. 2011). Thus, both patterned music
as well as loud noise stimulation has a capability to modulate
the hippocampus, thus causing alterations in the synaptic plas-
ticity. It is evident that the functional development of the brain
is dependent on neural activity that is likely to be mediated by a
variety of environmental factors including auditory stimulation.

6. Conclusion

Auditory stimulation in the form of a mother’s voice or
music can trigger mechanisms of brain functions including
learning and memory. However, sound can have detrimental
effect when played at a high decibel level or in an unpleasant
manner, e.g. loud noise. It is important to understand the
nature of sound stimulation along with the critical period of
development, during which sound influences brain structure
and functions across species, because sound stimulation can
modify neural connectivity in the early phase of life and thus
enhance higher cognitive function or even repair damaged
connectivity in various neurological disorders and patholog-
ical conditions. In addition, the pleasantness of sound is
associated with emotion: it might be a factor that can be
effectively used for therapeutic treatment of the secondary
illness in many psychiatric conditions. The effect of sound
stimulation could be associated with the up-regulation of
many neurochemical pathways in the brain. Most prominent-
ly, auditory stimulation triggers the BDNF-Trk pathway
(Angelucci et al. 2007; Wang et al. 2011), which is similar
to the pathway stimulated by enriched environment (Aguado
et al. 2003; Rossi et al. 2006; Sun et al. 2010). This has also
been postulated in our studies on the chick hippocampus
following prenatal sound stimulation (Chaudhury et al.
2009). It would be appropriate to validate prenatal sound
stimulation protocols in existing animal models of various
psychiatric disorders to determine whether sound stimulation
in the form of environmental enrichment could be a non-
invasive effective way to influence cell signalling pathways
in the brain, and thus to enhance beneficial functions includ-
ing learning and memory.
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